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Mixed Models in Practice
Khairil Anwar Notodiputro
Department of Statistics, Bogor Agricultural University
e-mail: khairilnotodiputro@gmail.com

Abstract. Over the past decade there has been an explosion of developments in mixed effects models and
their applications. The models have been applied in many areas such as agriculture, medicine, biology,
biostatistics, education, social, economic and management sciences. The mixed models have also been
intensively used in small area estimation, an area of research where proper statistical methods are needed
to obtain estimates with high precision in a situation where the available samples are very limited. In this
presentation, the mixed models have been discussed. We started by discussing the limitation of linear
models and then introduced the linear mixed models. The importance of the linear mixed models has
become evident if the predictor variables consisted of both fixed effects and random effects. These two
types of effects have often been observed in practice. However, the linear mixed models are based on
normal distributions of the response variables as well as the random effects whereas in practice these
variables may not be normally distributed. Hence, the generalized linear mixed models (GLMM) need to
be employed for non-normal distributions of the response variables, especially the exponential family of
distributions. Moreover, since the models are very general, then basically the models can be used to
handle various distributions of the response variables as well as the random effect distributions. Finally,
to demonstrate the practice of GLMM, we have shown our works on mixed models. Several of the works
have been related to the Na Thap river project, an IPB - PSU Collaborative Research project, RPM
1D16287.

Keywords: Bias Reduction, Generalized Linear Mixed Models Hierarchical Models,, Linear Models,
Mixed Models, Multilocation Eksperiment, Na Thap River
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Introduction

Consider a linear model y = Xb+&, where g£is
assumed to have a Gaussian disribution.

What if £is non-Gaussian?

Imagine a study to compare two treatments,
ﬂ “control” treatment VS “test” treatment. The

8 * combination has a binomial distribution with n=100

92 71

1 9 %  response variable is the incidence of favourable

S *  outcomes. A paired comparison is used by observing
j Zz : 100 individuals on each treatment on each pair.

5 o 21 Assuming independent observations, the number of
6 sl 22 favorable outcomes for each pair-treatment

7

8

and probability z;; for the i treatment and j™ pair.
How should we model the data?



Introduction (cont..)

We can start with the normal approximation and the
model can be described as follows:
EINECTEENECTEEN = Response variable: Let py = y;;/100
- i denotes the sample proportion,

95 36

1

2

3 03 g5 where y;; Is the number of favorable

‘5‘ Z: :’; outcomes out of 100 individuals.

; . i = Themodelis p; = pu + 7, + p; + ¢

. o Y where ¢ denotes an overall mean, t;

denotes i treatment effect, p;

‘ denotes j™ pair effect, and ¢; is the

The sample proportions ~ sampling error assumed i.i.d N(0,0?)
are 0.738 and 0.895

T-test: p-value = 0.1132



Introduction (cont..)

One obvious problem with the previous analysis is
as follows

= Normal approximation not-withstanding, the response
variable remains binomial, meaning the variance must
depend on .

= Assuming n changes from treatment to treatment (or
among pairs) the assumption of equal variance does not
hold.

= Transformation is required - the arc sine square root
transformation.

At this point in this example, we have reached the
limits of the linear model.



Introduction (cont..)

The limitation of the Linear Model (LM) can be
overcome by the Generalized Linear Mixed Model
(GLMM) which involves 3 components:

= The distribution of the observations:
¥ij |0 ~ Binomial (100, ; ).
= The linear predictor: ; = n + 7; + p;, where 5 Is the
intercept and asume the pair effects p, are i.i.d. N(0, ¢°,).

= The link function: with non-normal data, the canonical
parameter of the log likelihood is typically a better candidate
for fitting a linear model than the mean itself. For the
binomial, the canonical link function is #; = log[;; /(1-7;; )].




Types of Model
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Types of Model Effects

The types of model effects can be distinguished
based on how the levels of an effect are chosen and
the scope of the intended inference.

The model of the previous example:
Pij= a7+ p; + &

Treatment effects r have been fixed with two

conditions (either “control” or “test”)

Pair effects p depend on the individuals chosen as a
sample.

So r are fixed effects and p are random effects




Types of Model Effects (cont..) @&

In a fixed-effects model for an experiment, all the
factors in the experiment have a predetermined set of
levels and the only inferences are for the levels of the
factors actually used in the experiment.

In a random effects model for an experiment, the
levels of factors used in the experiment are randomly
selected from a population of possible levels. The
inferences from the data in the experiment are for all
levels of the factors in the population from which the
levels were selected and not only the levels used in the
experiment.



Types of Model Effects (cont..) &2

In a mixed-effects model (or simply mixed
model) for an experiment, the levels of some of the
factors used in the experiment are randomly selected
from a population of possible levels, whereas the
levels of the other factors in the experiment are
predetermined.

The inferences concerning factors with fixed levels are
only for the levels of the factors used in the experiment,
whereas inferences concerning factors with randomly
selected levels are for all levels of the factors in the
population from which the levels were selected.



Why Mixed Models?
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Why Mixed Models?

Consider a hypothetical data (Stroup, 2013):

Binomial

regression data
[ obs | X | N
1 0 11

Multi-batch data, two responses (Y and Fav)

a3 | Bacha
Y Fav N Y Fav N

0 Y Fav N [/Y\ Fav N
2 1 7 0 0 956 15 21 [96.6) 18 21 966 16 19 966 18 21
2 S I 3 99 13 17|97 | 14 16 95 13 19 968 18 21
S I = 6 985 19 23|93 |14 17 977 17 22 964 14 20
S I e 9 990 14 17| 963 |17 20 983 23 27 966 14 19
: : ii : 12 1002 18 23| 965 |15 20 991 16 21 968 14 19
T T oo 18 1019 19 27| 9.4 |14 22 1005 11 16 969 11 20
sole e 24 1041 15 201957 12 22 1012 13 18 971 11 16
10 9 16 \ 16 3 107.8 14 21 \952/ 11 25 1033 10 17 974 10 21
11 10 10 \ 9 48 1115 13 18 94 5 26 1059 6 16 974 5 19

One observation

oer level of X Levels of X'are observed for multiple batches



96.6
96.5
97.7
98.3
99.1
100.5
101.2
103.3
105.9

16
13
17
23
16
11
13
10
6

19
19
22
27
21
16
18
17
16

96.6
96.8
96.4
96.6
96.8
96.9
97.1
97.4
97.4

18
18
14
14
14
11
11
10
5

| Batch3 | Batch4
Y Fav N Y Fa N

21
21
20
19
19
20
16
21
19

This table shows 9 levels from O to 48. For each
of four batches, a continuous variable and a binomial
variable (N = number of Bernoulli trials and Ffav = number of
“successes”) are observed at each level of X

How should these data be modeled ?



Why Mixed Models? (cont..)§

Scatterplot of Y vs X

115

= 96.158 + 0.3430 X

110

= 96.522 + 0.2082 X

105+

100

/= 96.559 + 0.0203 X

95-

®Y,[=96.786 - 0.0464 X

Look at the response Y. The middle line shows the average linear
regression over all batches; the other lines show the regressions for each
individual batch. Inspecting the graph suggests that assuming linear
regression is reasonable but a common regression for all batches may not
be justified.



Why Mixed Models? (cont..)\/

Scatterplot of Y vs X

115

Separate linear
° regressions by batch
yields the linear predictor
N s gy = foi + Bu X, where
R e P ﬂOi and ﬂli afg,
________ respectively, the
2 Batch 4 intercept and slope for

''''''''''' ~ the i? batch.

110

-

100

o5 ¢ I "l B: aI_Cb.Z
0 10 20 30 40 50
X Bot+ by
/g (B, + by)
Orny =Bp+ by + (B; + by )Xy :

B, ., B, overall intercept and slope
b,;, b, batch-specific deviations from £, and £,.



Why Mixed Models? (cont..){

= Let us assume that the batches represent a sample
of a larger population of batches so that 5, and b,;
are random variables and, thus, have probability
distributions.

= Hence, the above model, i.e.

n; = PBo+ by + (B; + by )X
iS @ mixed model.

Fixed effect

Random effect




gives rise to the linear predictor:

n; =By *+ by + (B + i) X;
= (b, b, )pairs are assumed independent and within
each batch, the pairs are bivariate normal, that is,

by, -~ 0 ; EFP Gl‘:l
b, 0|6 O
where

o7 and o/ are the variances of b,;and b,;, respectively
0,, is the covariance between b, and b;.



Why Mixed Models? (cont..) (€2

= If the observed data is continuous (Y) and have a
Gaussian distribution, then the linear predictor is an
estimate of the data’s expected value, conditional on
the random effects b, and b;; as follows:

Observations: (y;;|bg;,by; ) ~ N(u;;lbg; .0y ,0°)

Model focus: E(y;;|Dgi b1 ) = [0 by

Linear predictor: n;; = By + by + (81 + by;) X;;
Assumptions about by; and by; (if random), for example,
as shown previously

5. Link function: identity, that is, z;|by; ,by; modeled by
Bo + Do + (B + by;) X

ol
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Why Mixed Models? (cont..)@
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= On the other hands, if you model the variable Favin
the table, then you adjust the distribution of the
observations and the link function, accordingly.

1. Observations: (Fav;|bg; ,by;) ~ Binomial[N;; ,(7;;|0g;,by; )]
Model focus: E(Fav;|by; ,by;) = [ bg;,by;

Linear predictor: ;; = Sy + by + (B, + by;) X;;
Assumptions about by; and by; (if random)

Link function: logit for example, log[z;; /(1 — ;)]
modeled by f, + by; + (B, + by;) Xj;, where ; is used
here as a shorthand for 7;[by;,by;

o1k W



Why Mixed Models? (cont..) (&2

Sogo® 4

Back to the linear predictor:

nij = Po + boi + (B + by;) X
This predictor consists of fixed effects and random
effects.

The fixed effects component of the linear predictor
is (B, + B, X;;) whereas the random effects
component is (by; + by Xj):

In matrix form the fixed effects note Xp
whereas the random effects are denoted byZb.
Hence, the linear predictor: 5 = Xp + Zb

Vector b ~ NV(0,G )




0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 458
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0
3
6
9
12
18
24
36
43
0
0
0
0
0
0
0
0
0
0
0

L

i

0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
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Why Mixed Models? (cont..)
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Estimation and Inference

= Recall that a fully specified GLMM is given by:

= A linear predictor X8 + Zb (or simply Xf if there are no
random effects)

= The distribution of y| b — the observations, conditional
on the random effects if there are random effects

= The link function, n = g(u| b), where u| b = E(y| b)
= The random effects distribution, b ~ N(0,G)

= For models with Gaussian data dan random effects:
= Linear predictor: n = XpB + 2Zb
= Distributions: y| b~ N(u| b, R); b ~ N(O0,G)
= Linkiy =u|b



Estimation and Inference

= The log-likelihood equations for y| band b,
respectively, are

E(y|b)= [ ]lﬂgiﬁﬁ) [ ]lﬂgﬂﬂ\) j

{(b)=- ]ﬂg (2m)- lng G

= Focusing on the “quasi-likelihood” part:

and

Jb’G‘lb

:uln—n

{(y,b)=- [ J(;; XB-Zb) R (y-XB—Zb) [




Estimation and Inference
= MLE can be obtained by setting a4y,b)/3p "’ an

800

- =

iy,b) /Jb ' equal to zero and solving the resulting
set of equations for fand b :

S[E{}';hﬂ _ xrﬂ_j}r . HFR_I}{ﬂ_Z;R—l}{h

B’

oy b)) ZR'y-XR'ZB-Z'R"'Zb-G'b

db’

= The resulting mixed model equations:

X'R'X X'R'Z

_Z’R'h: Z’R‘IZ+G";

B

h i

o

}{rR_l}r

Fy—1
_ZR V|

This 1s called
the Linear
Mixed Model,
1.e. the GLMM
with Gaussian
response and
random
effects.
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Estimation and Inference

If the distribution of response variable is not nor
then we use the GLMM with the essential features:

= Linear predictor: n = XpB + Zb

= Distribution: b ~ NV(0,G)

= Distribution or quasi-likelihood: E(y| b) = u| b,;
var (y| b) = V,>AV,*, where
V> = diag [(6°b(6)08°)*] and A = diag [1/a(p)],
and y| b either has a distribution that belongs to the
exponential family or a quasi-likelihood

= Link: = g(u| b), or alternatively, inverse link:
XB +2b = hm). Typically, h( *) = g=*(*)



Estimation and Inference

The quasi-likelihood of the observation conditiona
on the random effects is

gl(y|b) = y'460 — 1'Ab(0)
The log-likelihood of the random effects is
t(b) = —(b/2) log(2z) — (1/2)log(|G|) — (1/2)b'G™'b
The joint log(quasi)-likelihood is thus £(b) + ql(y|b)
The marginal (quasi-) likelihood is
([ [at(y 1)+ eo)]ab=ai(y)

= “'[}r’ﬁﬂ —~1’Ab(0)- [g ] log (2m) —(%] log(|G|) —(é)wc-]b}db

Approximation is required = pseudo-likelihood method
or Laplace approximation or Gauss Hermite quadrature.
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Estimation and Inference

The idea of pseudo-likelihood is to approximate:
the inverse link function by Taylor series expansion
evaluated at

ai(n

The Taylor series expansion: /(n)=k(n l+T‘ (n-n)

If D =diag[(cg(ulb)/ou)] then (Jiang, 2007)

h(n) =h(n) + DY(XB + Zb— Xp — Zb)
where D denotes D evaluated at i = Xg— Zb.
Let y* = q+D [y -(ilb)] = X + Zb +D [y-h(n)]
Then E(y*|b) = D [h(n)-h(n)]+X3+2Zb X5+ 2Zb)
Var(y*|b) =|DV,*AV.*D




= Let us fit a binomial mixed model to the multibatch data:

Observations: (Fav|by; ,by;) ~ B [N;; ,(z;lbgibyi )]

Model focus: E(Fav;|bg; ,by;) = m;lbgi.by;

Linear predictor: n; = B, + by + (B, + by;) X;

Assumptions about by; and b,; (if random)
Ll _ o+ boi + (B + byi) X5

Logit link: log[m; /(1 — m;; )] = By + by + (B, + by;) Xy, ! S

Fixed effects: X
l Random effects : Batch

vk W



Estimation and Inference

setwd("d:/Prof.Kan/mixmodel_Kan_1D") —
read.csv("multibatchdata.csv*',h=T,as.is=T) -> dt Binomial reponse
library(Ime4)

Batch<- as.character(dt$Batch)

gml <- glmer(cbind(dt$Fav, dtSN- dt$Fav) ~ dt$X+ (1 | Batch), family = binomial)
summary(gm1l)

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod]
Family: binomial ( logit)
Formula: cbind(dt$Fav, dt$N - dt$Fav) ~ dt$X + (1 | Batch)

AIC BIC logLik deviance  df.resid
151.8 156.5 -72.9 145.8 33
Scaled residuals:
Min 1Q Median  3Q Max

-1.6315 -0.6042 0.1118 0.4402 3.0004

Random effects:

Groups Name Variance  Std.Dev.
Batch (Intercept) 0.01395 0.1181
Number of obs: 36, groups: Batch, 4

Fixed effects:

Estimate  Std. Error  z value Pr(>|z|)
(Intercept) 1.584756 0.149651 10.590 < 2e-16 ***
dt$X -0.045388 0.005963 -7.612 2.7e-14 ***
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95.6
96.9
98.5
99.0
100.2
101.9
104.1
107.8
11.

96.6
96.7
96.3
96.3
96.5
96.4
95.7
95.2
94.6

21
16
17
20
20
22
22
25
26

Observations: (y;|bg;,0y; ) ~ N(u;;|0g; ,055,6%)
Model focus: E(y;|bo; ,by; ) = 4]0 0y

Linear predictor: u; = B, + by + (B, + by;) X;;
Assumptions about by, and b;; ~ N(0, G)
dentity link: (u;;]0g; ,by; ) = B + by + (61 + by;) X

96.6
96.5
97.7
98.3
99.1
100.5
101.2
103.3
05.

16 19
13 19
17 22
23 27
16 21
11 16
13 18
10 17
6 16

=

96.6
96.8
96.4
96.6
96.8
96.9
97.1
97.4
97.4

21
21
20
19
19
20
16
21
19

Fixed effects: X
Random effects : Batch

Po + by + (B +by;) Xy




Estimation and Inference

setwd("'d:/Prof.Kan/mixmodel_Kan_1D") Normal reponse
read.csv('multibatchdata.csv",h=T,as.is=T) -> dt

library(Ime4)

Batch<- as.character(dt$Batch)

gm2 <- glmer(dt$Y ~ dt$X+ (1 | Batch), family =gaussian)

summary(gm2)

Linear mixed model fit by REML ['ImerMod']
Formula: dt$Y ~ dt$X + (1 | Batch)
REML criterion at convergence: 176.2

Linear model

Scaled residuals:

Min 1Q Median 3Q Max

-2.41643  -0.47968 0.02534  0.57671 2.43510
Randorm effecs: oo lor Lsiss Lsie Lo Lo
Groups Name Variance  Std.Deuv. 122838 122838  264.83 0.000
Batch (Intercept) 6.332 2.516
Residual 5.857 2.420 Batch 3 0.782 0.261 0.56 0.644
Number of obs: 36, groups: Batch, 4

X*Batch 3  168.579 56.193  121.15 0.000
Fixed effects:

Error 28 12.987 0.464

Estimate  Std. Error tvalue
(Intercept) 96.50627  1.40072 68.90 Total 35 492943
dt$X 0.13129 0.02867 4.58
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Estimation and Inference

Model diagnostics
» Literatures on diagnostics of mixed models involving

random effects is not extensive.

» Limited methodology is available, mostly regarding
assessing the distribution of the random effects and errors.

» The methods may be classified as diagnostic plots and
goodness-of-fit tests.

Diagnostic plots. Lange and Ryan (1989) proposed to examine a
Q—Q plot of some standardized linear combinations

o o ,
= : A PR

{¢'Var(a;)e}/?

where c is a known vector. They argued that, through appropriate
choices of ¢, the plot can be made sensitive to different types of

model departures.




Estimation and Inference

Goodness of fit tests. Few authors have developed tests for
checking distributional assumptions involved in linear mixed
models. Consider a mixed ANOVA model

y=XB + Za + ¢
where for 1 <i <s, o; = (%j)15<,» Where the ;s are Lid. ~ (0, 0%),
and continuous distribution Fi = Fi(: |5;); and &= (g,);<;<p, Where
the es are iid. ~ (0, 7%), and continuous distribution G = G(- |z ),
and a, . .., a, ¢ are independent.

We are interested in testing the following hypothesis,
Hy : FiCloy) = Foi(tley . 1 <1<s,
and G(-|7) = Go("|z);
that is, the distributions of the random effects and errors, up to
a set of unknown variance components ¢, . . ., o,%, 12, are as
assumed. The model does not fit if we reject this hipothesis.



Mixed Models in Practice
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Mixed Models in Practice

Mixed model is very popular

Google search (April 25%, 2016):

= "mixed model” > 629,000 results (0.46 seconds)
= “robust statistics” - 197,000 results (0.40 seconds)
= “AMMI” > 11,900 results (0.45 seconds)

(Additive Main effect Multiplicative Interaction)

The mixed models have been in many areas such

ds.

= Biology, Education, Social and economics, Humanity,
Physics and astronomy, Environment

Next is several works in Bogor on mixed models
which are promising but still in early stages.



Mixed Models in Practice (cont..)fj

Example 1. (Notodiputro and Yahya, 2016)

“The Gamma Mixed Model for Analyzing Length of Stay of
Tuberculosis Patients at Gorontalo Hospital”

Gorontalo is a province in eastern part of Indonesia and is
considered having high incidence of tuberculosis.

The length of stay of a patient is the response variable or the
outcomes ( ¥ measured in days).

Usually distribution of duration (length of stay, Y) is skewed,
and we may approximate using gamma distribution.

The data was collected from a hospital in Gorontalo province
and it consists of many predictors, namely room type, age
category, sex, secondary diseases, rural or urban, doctor.

The sample size is 612 patients, these are the patients during
2015.



Mixed Models in Practice (cont..) &z

= Example 1. (Notodiputro and Yahya, 2016)

= “The Gamma Mixed Model for Analyzing Length of Stay of
Tuberculosis Patients at Gorontalo Hospital”

Response var.: length of stay in the hospital () assumed to
have (conditional on random effects) gamma distributions.

Explanatory var.: room type (p), age category (v), sex (S),
secondary diseases (), rural or urban (a), doctor (4d)

The linear predictor:

Nijkimno = 1+ ;i T U; + 5 + Kk + a,, + (pu);;
+ (ps)i + (k)i + ()i, + (US) j + (uk)
+ (ua) jm + sk + (s + (ka)y, +d,

where the distribution of random effects d ~ MO, c°)



Mixed Models in Pract

ice (

,&NWW Laos { @"""“"”“" s PHILIPPINE
Bayof 7 mvn"'.. A» ane v SEA Northern
Bengal Tk ) \ IR b .\Iyr'ianm‘ R e
L R e N B | E le 1
I - PHILIPPINES - ani | Xa m p e ]
p \ \ ; : GHagatna |
Andaman bs. | o b Y 2 """‘”‘J“ RE < China Guam (U.S.)
:,r b gEmm o % mar
ANDAMAN ""’/ o m‘; - | | | | ¢
‘ Sea FEDERATED STATES OF MICRONESIA
. Mindanan
Nicobar I& [ P 3 Caroline Istands
(hwtia) | A C I ¥ =
| Vi Palikir
Bandar Sert | b &
Begawan o b |
ma AMUNEIDARL \uu?p' | CELEBES I,m, | M 0 C
Besar |3 3 |
MALAYSIA g 5 A7 &
[ Sarawa SEA Pty | A 4
= P " )5 & &
|5 | Rornen ! é,'[mmm . -
- AP M
? (R Sulawesi
"‘! o SN - Admiralty 5
s ant ¥ ", Manas,
\ ¥ Sorun Mt S 87 “10 - 200km Bunaki
% 3 i 7 . en Res. koko
bt “‘L,)u, & By ™ 3 Mo o AN
JAVA SEA % arpuslen :
(Laut Jave) Al A A Gan.
dloro I\ N D siN\ il 4 e Ul pdri _Ambang Res L
: JINEW.GEINEA Ra
N Lo M Kamwan b [riente ; N a Res,
Juver '(:‘iauxr. . NN 2 ¥
Summbg oW PRES 64 ey s ,_._,,
o N > -‘,v B 4 inibr I . Ve _ng;!:ga
I NDIAN Vv P il ARALURA Torres Sirail
(,‘hn'.r:r:m’l.)“ 0 7 fxe o Mavilte 1 SEA m.-,l Thursidar Lo €, York 77é!u_k_
ust, } Gl
o E \ TINOK SEA MT k\;“g Armhem <‘
ocas Iy,
(Aust,) ‘: IAnl ! u
- { £ ape § ¢ Mobitt .
OCEAN b N\ e B o L G Lindu SYLAWESI
X i s e vy EogpLinoy oYL
& i oAl . Park Mw
A STRALIA N ENG  Poso Mormh
a Valley o
Peruhui
v MC Regerve D. Tk.Tolo
Indonesia T
Makale U
! Torafan Village 2 N
rit timojong
\ Mt
?a: Epars Weaving = eI
useum VAI:/‘
ata
: o Tukangbes: P
e B MAMCIQ Ql__ Mirlne Res.
N \' Aqx Tiekawginss
- o\ Seabird Restin
9 Selyme o S i




Mixed Models in Practice (cont..)

= Example 1. (Notodiputro and Yahya, 2016)

= The anova table

n =612 patients

Source DF F p-value
Room type (p) 1 5.51 0.019
Sex (s) 1 0.01 0.908
Age category (v) 2 0.03 0.972
Secondary disease (k) 1 3.58 0.059
Rural or urban (&) 1 8.22 0.004
p*s 1 0.30 0.582
p*u 2 0.95 0.388
p*k 1 13.91 0.000
p*a 1 8.78 0.003
s*u 2 0.54 0.581
s*k 1 0.01 0.925
s*a 1 0.06 0.809
u*k 2 2.06 0.129
u*a 2 0.11 0.900
k*a 1 1.39 0.239

5,2 = 0.00679
5.2 = 2.52600

¥

Variation within doctor is
smaller than variation
between doctors

Room type is significant:
the patients in better
room stay longer

Interaction p*k and p*a
are significant = further
exploration is required



Mixed Models in Practice (cont..) &=

Example 1. (Notodiputro and Yahya, 2016)

Room Type and Secondary Disease with respect to Length of Stay

Secondary
Disease
—&— No
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Interactions
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Mixed Models in Practice

- Example 2. (Notodiputro and Adabiyah, 2016)

= “Nested Linear Mixed Model and Parametric Stability Analysis
for Multilocation Experiments of Shorgum Genotypes”

= 10 shorghum genotypes were
evaluated based on their yields

a8 " 3 sorghum were used as control

W = Randomized block experiments
: ‘ were carried out in two seasons
and 5 different locations within
the seasons.

= Eventually, we want to know the performance of these
genotypes and which of them that can produce stable yields.



Mixed Models in Practice (cont..) &z

= Example 2. (Notodiputro and Adabiyah, 2016)

= “Nested Linear Mixed Model and Parametric Stability Analysis
for Multilocation Experiments of Shorgum Genotypes”

= Response var.: Shorgum yield () assumed to have
(conditional on random effects) normal distributions

= Explanatory var.: genotypes (G), seasons (.5), locations (L),
blocks (5B)

= The linear predictor:
Mg BTG T3t Lyt (G5); it (Gij( 3 T8 T &

where the distribution of random effects B~ M0, 55%);
L ~MNGO, 02); and GL ~ MO, o5?)
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Mixed Models in Practice (cont..) &

R S0Go®

= Example 2. (Notodiputro and Adabiyah, 2016)
= The anova table 13x3x5x2 = 390 experimental units
Random Effects Varest  Std eror Z p-value
05 o Location (Season) 0.2248  0.1203 1.8700  0.0309
eb ¢ Genotype*Location (Season)  0.0832  0.0316 2.7900 0.0026
& &@  Block (Season*Location) 0.0000
o Error 0.3554
Fixed Effects DF for DF for F P-value
> numerator  denominator
_\906“ Genotype 12 96 54.4700 <.0001
& gé Season 1 8 0.3100 0.5923

Genotype*Season 12 96 1.3500 0.2027




Mixed Models in Practice (cont..) &z
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= Example 2. (Notodiputro and Adabiyah, 2016)

Yield

Genotypes v T 72

Gl 19.5814 21.3965 10.5619
G2 20.4037 21.3650 8.8558
G3 22.2235 25.1734 12.2653
G4 179484 23.1228 7.1587
G5 6.4129 14.4406 4.1602
G6 14.6978 24.7314 4.6860
G7 6.9182 11.8964 3.1412
G8 8.0645 12.1867 4.5061
G9 19.2566 19.7342 7.4759
G10 12.7184 29.7786  5.3025
Kawali (K) 9.5080 15.3093 4.6290
Mandau (M) 11.4640 27.5873 2.0947
Pahat (P) 0.5229 14.9245 3.4744

CV; is coefficient of variation; W;? is ecovalence; and df is genotypic stability

cV,

20

15

10

11 Ig
G8
Gl
4.0 5.0 6.0 6.5
Yield




Mixed Models in Practice (cont..)
= Example 3. (Angraini and Notodiputro, 2016)

180.00 UThEc1000-N
160.00 x‘\_l x"‘x (Saheem, 2015)
140.00 .
120.00
T8
100.00 I
80.00
60.00 [hesiland
40.00
= 1 | -
0.00 h
2010 2011 2012 2013 2014 o
mSitel MSite2 WSite3 MWSited MWSite5 MSite6 MSite7 WSiteS WSite9 MSitel0

water

) 0 . Y
e

, s v 684 646 BEE 6940 92 694 696
= ¢ LThMx1000-East

IPB - PSU Collaborative Research RPM 1D16287; The Na Thap river Project




Mixed Models in Practice (cont..)

Example 3. (Angraini and Notodiputro, 2016)

“Generalized Linear Mixed Models for Analyzing Fish Stock at
Na Thap River”

Response var.: Fish stock () assumed to have (conditional on
random effects) Gamma distributions

Explanatory var.: Zone (£), WDEPTH (W), SAL (L), DO (D)
BOD (£), and Site (5).
The linear predictor:
Hi — U +5,Z; +5,W, +,53 L; +5,D; +/85Bi + 5}

where the distribution of random effects S; ~ M0, 62);
Or,y =XB + Zsand s ~ N(0,G)
Link function. log

IPB - PSU Collaborative Research RPM 1D16287; The Na Thap river Project



Mixed Models in Practice (cont..)&z

= Example 3. (Angraini and Notodiputro, 2016)

U1 000-Morth
Estimates Std.error t Pr(>|t|) " (Saheem, 2015)
Intersep 4.549 0.164 27.740  0.000*
Zone2 0008 0030 -0.287  0.774, L
Zone3 0.282 0.034 8224 0.000* | @
WTEMP 0.026 0005 -5381  0.000* -
WDEPTH -0.039 0.006 -6.300 0.000*
SAL 0.018 0.001 20.552 O.OOO*T?S
DO 0.015 0.009 1.603 0.109
BOD 0.028 0.008 3.267 0.001* N
gz SiEe 0.320 Variation among sites was evident
o? error 0.084
??? i water
LT
_ /" pa Ching .1/ \ %
n = 3741 b & '.
6e4 688 BEE 690 B9z Bou G696
LTk 1 000-East

IPB - PSU Collaborative Research RPM 1D16287; The Na Thap river Project
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Mixed Models in Practice (cont..)&&zE

\ —yr—

Example 3. (Angraini and Notodiputro, 2016)
The pairwise confidence intervals:

H Substracted from Site

2 3 4
1 (-7909,4741) (-774,11876) (-8336,4315)
2 (810,13460) (-6751,5899)

(-13886,-1236)

The power plant is in site 3
Site 2 vs 3 is significant (site 2 > site 3)
Site 3 vs 4 is siginificant (site 4 > site 3)

IPB - PSU Collaborative Research RPM 1D16287; The Na Thap river Project



Mixed Models in Practice (cont..)@&2

Example 4. (Arisanti and Notodiputro, 2016)

“Bias Reduction in Estimating Variance Components of
Phytoplankton Abundance at Na Thap River based on Logistic
Linear Mixed Models”

Response var.: Phytoplankton abundance () assumed to
have (conditional on random effects) binomial distributions

Explanatory var.: SAL (L), DO (D) BOD (B), and Site (S).
The linear predictor:
Hi — U +,53 L; +5,D; +:B5Bi +5}
where the distribution of random effects S; ~ M0, 62);
Or,y =XB + Zsand s ~ N(0,G)
Link function: logistics
IPB - PSU Collaborative Research RPM 1D16287; The Na Thap river Project



Mixed Models in Practice (cont..)

= Example 4. (Arisanti and Notodiputro, 2016)
= Tt is well known that variance estimates of MLE are biased

=  We follow the idea of Firth (1993) to adjust variance

components in GLMM with logistic link function
If U(6) is the score function in ML
) estimation, and & is subject to a
positive bias H(8), the score
function is shifted downward at
each point 8 by amount /(68)b(6),
. Where —(6)=U16) is the local

o* F = _ |
\ ﬁm ?J?\Stlieon::’ then the adjusted score

\m U(8) = U(6)- i(6)b(8)
or

uxe)= ue)+ A6)
IPB - PSU Collaborative Research RPM 1D16287; The Na Thap river Project

ua)




Mixed Models in Practice (cont..)‘~

= Example 4. (Arisanti and Notodiputro, 2016)
= The adjusted score function:

U*(6)= U8)- i(8)b(6) or U*(8)= U(B)+ A(B)
= The solution to this adjusted score function is 8*

= Firth adjustment is based on F and H are Fisher’s information
and Hessian matrix

Ag; =

; =~ tr{F1E{Ug;(H ~ U)])

IPB - PSU Collaborative Research RPM 1D16287; The Na Thap river Project



Mixed Models in Practice (cont..)

= Example 4. (Arisanti and Notodiputro, 2016)

= The ML estimate of variance component of site:
o°site = 0.986

= The adjusted estimate is

: g°site = 0.735

= The variance component has been reduced by 26%

n = 466 (Synedra)

= The analysis of variance table:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.0288 0.3682 5.511 0.0000
DO -0.3153 0.0775 -4.067 0.0000
BOD 0.1325 0.0998 1.327 0.1840
Salinitas -0.0108 0.0106 -1.021 0.3070

IPB - PSU Collaborative Research RPM 1D16287; The Na Thap river Project
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Mixed Models in Practice (cont..)§@

= Example 5. (Angraini and Notodiputro, 2016)

= A Hierarchical Approach to Generalized Linear Mixed Mode/
for Analyzing Fish Species Abundance at Na Thap River”

= Response var.: Fish species abundance (y) assumed to have
(conditional on random effects) Poisson (A) distributions.

= Explanatory var.: SAL (L), DO (D) BOD (B), and Site (S).
= The linear predictor:
Nigw — U +3,Z, +,52Wj +3; L, + 3, D; +,55Bj + 5

where the distribution of random effects S, ~ Gamma(a)
= Link function: log
= The hierarchical likelihood

L(YID)+L (aw)= 2 (yiudnd; — 4 ) + 2 {a Inug+a In a- au-a In I(a)}

IPB - PSU Collaborative Research RPM 1D16287; The Na Thap river Project



Mixed Models in Practice (cont..)&z
= Example 5. (Angraini and Notodiputro, 2016)

Hierarchical Model

Estimate  Std.error T Pr(>|t])

Intersep 3.021 0.180 16.826 0.000
Zonefreshwater -0.242 0.156 -1.558 0.120

Zonesaline 0.344 0.167 2.056 0.040 n = 531
WTEMP 0.002 0.004 0.552 0.581

WDEPTH -0.010 0.010 -0.945 0.345

SAL 0.006 0.001 8.004 0.000

DO 0.026 0.007 3.507 0.000

BOD 0.025 0.007 3.619 0.000

o?Site 0.709

Variation among sites was evident
o?Sisaan 0.041

IPB - PSU Collaborative Research RPM 1D16287; The Na Thap river Project
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Concluding Remarks

Linear models:
Anova, Regression,
Ancova, etc

Developed into... Developed into...

Mixed models:

Repeated measures,
Change-over trials,
Subsampling,
Clustered data

Generalized linear

models:
Logit/probit models,

Poisson models,
\ Merged into... /

Gamma models

Generalized linear API?lled In
i various areas or
mixed models: biect
Mixed model for subjects,

non-normal data including in small

~_ area estimation
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