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Abstract. Over the past decade there has been an explosion of developments in mixed effects models and 

their applications. The models have been applied in many areas such as agriculture, medicine, biology, 

biostatistics, education, social, economic and management sciences. The mixed models have also been 

intensively used in small area estimation, an area of research where proper statistical methods are needed 

to obtain estimates with high precision in a situation where the available samples are very limited.  In this 

presentation, the mixed models have been discussed. We started by discussing the limitation of linear 

models and then introduced the linear mixed models. The importance of the linear mixed models has 

become evident if the predictor variables consisted of both fixed effects and random effects. These two 

types of effects have often been observed in practice. However, the linear mixed models are based on 

normal distributions of the response variables as well as the random effects whereas in practice these 

variables may not be normally distributed. Hence, the generalized linear mixed models (GLMM) need to 

be employed for non-normal distributions of the response variables, especially the exponential family of 

distributions.  Moreover, since the models are very general, then basically the models can be used to 

handle various distributions of the response variables as well as the random effect distributions. Finally, 

to demonstrate the practice of GLMM, we have shown our works on mixed models. Several of the works 

have been related to the Na Thap river project, an IPB - PSU Collaborative Research project, RPM 

ID16287. 
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Introduction 



Introduction 
Consider a linear model y = Xb+ε, where ε is 
assumed to have a Gaussian disribution. 

What if ε is non-Gaussian? 
Imagine a study to compare two treatments, 

“control” treatment vs “test” treatment. The 

response variable is the incidence of favourable 

outcomes. A paired comparison is used by observing 

100 individuals on each treatment on each pair. 

Assuming independent observations, the number of 

favorable outcomes for each pair-treatment 

combination has a binomial distribution with n=100 

and probability πij for the ith treatment and jth pair. 

How should we model the data? 

Pair Treatment
_0 

Treatmen
t_1 

1 98 94 

2 95 36 

3 93 85 

4 94 88 

5 99 91 

6 61 82 

7 84 43 

8 92 71 



Introduction (cont..) 
We can start with the normal approximation and the 
model can be described as follows: 

 Response variable: Let pij = yij /100 

denotes the sample proportion, 

where yij is the number of favorable 

outcomes out of 100 individuals. 

 The model is pij = μ + τi + ρj + εij 

where μ denotes an overall mean, τi 

denotes ith treatment effect, ρj 

denotes jth pair effect, and εij is the 

sampling error assumed i.i.d N(0,σ2)  The sample proportions 
are 0.738 and 0.895 

 T-test: p-value = 0.1132 

Pair Treatment_0 Treatment_1 

1 98 94 

2 95 36 

3 93 85 

4 94 88 

5 99 91 

6 61 82 

7 84 43 

8 92 71 



Introduction (cont..) 
One obvious problem with the previous analysis is 
as follows 

 Normal approximation not-withstanding, the response 
variable remains binomial, meaning the variance must 
depend on π. 

 Assuming π changes from treatment to treatment (or 

among pairs) the assumption of equal variance does not 
hold. 

 Transformation is required  the arc sine square root 

transformation. 

At this point in this example, we have reached the 
limits of the linear model. 



Introduction (cont..) 
The limitation of the Linear Model (LM) can be 
overcome by the Generalized Linear Mixed Model 
(GLMM) which involves 3 components: 

 The distribution of the observations:    

  yij |j ~ Binomial (100, πij ). 

 The linear predictor: hij = h + τi + j , where h is the 

intercept and asume the pair effects j  are i.i.d. N(0, σ2
 ). 

 The link function: with non-normal data, the canonical 

parameter of the log likelihood is typically a better candidate 

for fitting a linear model than the mean itself.  For the 

binomial, the canonical link function is hij = log[πij /(1-πij )]. 
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Types of  Model  Effects 



Types of Model Effects 
 The types of model effects can be distinguished 

based on how the levels of an effect are chosen and 
the scope of the intended inference. 

 The model of the previous example: 

pij= μ + τi + ρj + εij 
 Treatment effects τ have been fixed with two 

conditions (either “control” or “test”) 

 Pair effects ρ depend on the individuals chosen as a 

sample. 

 So τ are fixed effects and ρ are random effects 



Types of Model Effects (cont..) 

In a fixed-effects model for an experiment, all the 
factors in the experiment have a predetermined set of 
levels and the only inferences are for the levels of the 
factors actually used in the experiment. 

In a random effects model for an experiment, the 
levels of factors used in the experiment are randomly 
selected from a population of possible levels.  The 
inferences from the data in the experiment are for all 
levels of the factors in the population from which the 
levels were selected and not only the levels used in the 
experiment. 



In a mixed-effects model (or simply mixed 
model) for an experiment, the levels of some of the 
factors used in the experiment are randomly selected 
from a population of possible levels, whereas the 
levels of the other factors in the experiment are 
predetermined. 

The inferences concerning factors with fixed levels are 
only for the levels of the factors used in the experiment, 
whereas inferences concerning factors with randomly 
selected levels are for all levels of the factors in the 
population from which the levels were selected. 

Types of Model Effects (cont..) 
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Why Mixed Models? 



Consider a hypothetical data (Stroup, 2013): 

Why Mixed Models? 

One observation 
per level of X 

Levels of X are observed for multiple batches  

Obs X N Fav 

1 0 11 0 

2 1 7 0 

3 2 9 2 

4 3 11 2 

5 4 12 2 

6 5 15 5 

7 6 11 7 

8 7 15 12 

9 8 11 10 

10 9 16 16 

11 10 10 9 

Binomial 
regression data 

X Batch 1 Batch2 Batch 3 Batch 4 

Y Fav N Y Fav N Y Fav N Y Fav N 

0 95.6 15 21 96.6 18 21 96.6 16 19 96.6 18 21 

3 96.9 13 17 96.7 14 16 96.5 13 19 96.8 18 21 

6 98.5 19 23 96.3 14 17 97.7 17 22 96.4 14 20 

9 99.0 14 17 96.3 17 20 98.3 23 27 96.6 14 19 

12 100.2 18 23 96.5 15 20 99.1 16 21 96.8 14 19 

18 101.9 19 27 96.4 14 22 100.5 11 16 96.9 11 20 

24 104.1 15 20 95.7 12 22 101.2 13 18 97.1 11 16 

36 107.8 14 21 95.2 11 25 103.3 10 17 97.4 10 21 

48 111.5 13 18 94.6 5 26 105.9 6 16 97.4 5 19 

Multi-batch data, two responses (Y and Fav) 



This table shows 9 levels of X varying from 0 to 48. For each 
of four batches, a continuous variable (Y ) and a binomial 
variable (N = number of Bernoulli trials and Fav = number of 
“successes”) are observed at each level of X. 

Why Mixed Models? (cont..) 

How should these data be modeled ? 

X Batch 1 Batch2 Batch 3 Batch 4 

Y Fav N Y Fav N Y Fav N Y Fav N 

0 95.6 15 21 96.6 18 21 96.6 16 19 96.6 18 21 

3 96.9 13 17 96.7 14 16 96.5 13 19 96.8 18 21 

6 98.5 19 23 96.3 14 17 97.7 17 22 96.4 14 20 

9 99.0 14 17 96.3 17 20 98.3 23 27 96.6 14 19 

12 100.2 18 23 96.5 15 20 99.1 16 21 96.8 14 19 

18 101.9 19 27 96.4 14 22 100.5 11 16 96.9 11 20 

24 104.1 15 20 95.7 12 22 101.2 13 18 97.1 11 16 

36 107.8 14 21 95.2 11 25 103.3 10 17 97.4 10 21 

48 111.5 13 18 94.6 5 26 105.9 6 16 97.4 5 19 



Look at the response Y. The middle line shows the average linear 
regression over all batches; the  other lines show the regressions for each 
individual batch. Inspecting the graph suggests that assuming linear 
regression is reasonable but a common regression for all batches may not 
be justified. 

Why Mixed Models? (cont..) 

Batch 4 

Batch 2 

 Y1 = 96.158 + 0.3430 X 

 Y2 = 96.786 - 0.0464 X 

 Y3 = 96.522 + 0.2082 X 

 Y4 = 96.559 + 0.0203 X 



Why Mixed Models? (cont..) 

 Separate linear 
regressions by batch 
yields the linear predictor 
hij = β0i + β1i Xij , where 
β0i  and β1i  are, 

respectively, the 
intercept and slope for 
the ith batch. 

Batch 4 

Batch 2 

Or hij = β0 + b0i + (β1 + b1i )Xij ,  

 β0 , β1 overall intercept and slope 

 b0i , b1i batch-specific deviations from β0 and β1. 

β0 + b0i 

(β1 + b1i ) 



Why Mixed Models? (cont..) 

 Let us assume that the batches represent a sample 
of a larger population of batches so that b0i  and b1i  

are random variables and, thus, have probability 
distributions. 

 Hence, the above model, i.e. 

   hij = β0 + b0i + (β1 + b1i )Xij 

 is a mixed model. 

Fixed effect 

Random effect 



Why Mixed Models? (cont..) 
 To summarize, the multi-batch regression example 

gives rise to the linear predictor: 

    hij = β0 + b0i + (β1 + b1i) Xij 

 (b0i, b1i ) pairs are assumed independent and within 
each batch,  the pairs are bivariate normal, that is, 

where 
   σ0

2 and σ1
2 are the variances of b0i and b1i , respectively 

   σ01 is the covariance between b0i and b1i. 



Why Mixed Models? (cont..) 
 If the observed data is continuous (Y ) and have a 

Gaussian distribution, then the linear predictor is an 
estimate of the data’s expected value, conditional on 

the random effects b0i  and b1i  as follows: 

1. Observations: (yij|b0i ,b1i ) ∼ N(μij|b0i ,b1i ,σ
2 ) 

2. Model focus: E(yij|b0i ,b1i ) = μij|b0i ,b1i  

3. Linear predictor: hij = β0 + b0i + (β1 + b1i ) Xij 

4. Assumptions about b0i  and b1i  (if random), for example, 

as shown previously 

5. Link function: identity, that is, μij|b0i ,b1i modeled by 

 β0 + b0i + (β1 + b1i ) Xij 



Why Mixed Models? (cont..) 

 On the other hands, if you model the variable Fav in 
the table, then you adjust the distribution of the 
observations and the link function, accordingly. 

1. Observations: (Favij|b0i ,b1i ) ∼ Binomial[Nij ,(πij|b0i,b1i )] 

2. Model focus: E(Favij|b0i ,b1i ) = πij|b0i,b1i 

3. Linear predictor: hij = β0 + b0i + (β1 + b1i ) Xij 

4. Assumptions about b0i  and b1i (if random) 

5. Link function: logit  for example, log[πij /(1 − πij )] 

modeled by β0 + b0i + (β1 + b1i ) Xij , where πij is used 

here as a shorthand for πij|b0i,b1i 



Why Mixed Models? (cont..) 
 Back to the linear predictor: 

    hij = β0 + b0i + (β1 + b1i ) Xij  

 This predictor consists of fixed effects and random 
effects. 

 The fixed effects component of the linear predictor 
is (β0 + β1 Xij) whereas the random effects 
component is (b0i + b1i  Xij). 

 In matrix form the fixed effects are denoted by Xb 

whereas the random effects are denoted by Zb. 

 Hence, the linear predictor: h = Xb + Zb 

 Vector b ∼ N(0,G ) 



Why Mixed Models? (cont..) 

Xb = Zb = 
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Estimation and Inference 



Estimation and Inference 
 Recall that a fully specified GLMM is given by: 

 A linear predictor Xβ + Zb  (or simply Xβ if there are no 
random effects) 

 The distribution of y|b  — the observations, conditional 
on the random effects if there are random effects 

 The link function, η = g(μ|b), where μ|b = E(y|b) 

 The random effects distribution, b ∼ N(0,G) 

 

 For models with Gaussian data dan random effects: 

 Linear predictor: η = Xβ + Zb 

 Distributions: y|b ∼ N(μ|b, R); b ∼ N(0,G) 

 Link: η = μ|b 



Estimation and Inference 
 The log-likelihood equations for y|b and b, 

respectively, are  

 Focusing on the “quasi-likelihood” part: 



Estimation and Inference 
 MLE can be obtained by setting ∂ℓ(y,b)/∂β ′ and 

∂ℓ(y,b) /∂b ′ equal to zero and solving the resulting 
set of equations for β and b : 

 The resulting mixed model equations: 

This is called  

the Linear 

Mixed Model, 

i.e. the GLMM 

with Gaussian 

response and 

random 

effects. 



Estimation and Inference 
 If the distribution of response variable is not normal 

then we use the GLMM with the essential features: 
 

 Linear predictor: η = Xβ + Zb 

 Distribution: b ∼ N(0,G) 

 Distribution or quasi-likelihood: E(y|b) = μ|b;  

 Var (y|b) = Vμ
½AVμ

½ , where 

 Vμ
½ = diag [(∂2b(θ)/∂θ 2) ½] and A = diag [1/a(φ)] , 

 and y|b either has a distribution that belongs to the 
 exponential family or a quasi-likelihood 

 Link: η = g(μ|b), or alternatively, inverse link: 

 Xβ + Zb = h(η). Typically, h( · ) = g−1( ·)  



Estimation and Inference 

 The quasi-likelihood of the observation conditional 
on the random effects is 

   ql(y|b) = y′Aθ − 1′Ab(θ) 

 The log-likelihood of the random effects is 

 ℓ(b) = −(b/2) log(2π) − (1/2)log(|G|) − (1/2)b′G−1b 

 The joint log(quasi)-likelihood is thus ℓ(b) + ql(y|b) 

 The marginal (quasi-) likelihood is 

Approximation is required  pseudo-likelihood  method 

or Laplace approximation or Gauss Hermite quadrature. 



Estimation and Inference 
 The idea of pseudo-likelihood is to approximate 

the inverse link function by Taylor series expansion 
evaluated at h 

 The Taylor series expansion:  

 

 If D =diag [(∂g(μ|b)/∂μ)] then (Jiang, 2007) 
 

 h(h) ≈h(h) + D -1(Xb + Zb – Xb – Zb) 

where D denotes D evaluated at h = Xb – Zb. 

 Let y* = h+D -1[y -(μ|b)] = Xb + Zb +D -1[y-h(h)] 

 Then E(y*|b) = D [h(h)-h(h)]+Xb+Zb ≈Xb+Zb  

   Var(y*|b) = DVμ
½AVμ

½D 

˜ 

˜ ˜ ˜ ˜ 

˜ ˜ ˜ ˜ 

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 

˜ ˜ ˜ ˜ 



Estimation and Inference 
 Let us fit a binomial mixed model to the multibatch data: 

X Batch 1 Batch2 Batch 3 Batch 4 

Y Fav N Y Fav N Y Fav N Y Fav N 

0 95.6 15 21 96.6 18 21 96.6 16 19 96.6 18 21 

3 96.9 13 17 96.7 14 16 96.5 13 19 96.8 18 21 

6 98.5 19 23 96.3 14 17 97.7 17 22 96.4 14 20 

9 99.0 14 17 96.3 17 20 98.3 23 27 96.6 14 19 

12 100.2 18 23 96.5 15 20 99.1 16 21 96.8 14 19 

18 101.9 19 27 96.4 14 22 100.5 11 16 96.9 11 20 

24 104.1 15 20 95.7 12 22 101.2 13 18 97.1 11 16 

36 107.8 14 21 95.2 11 25 103.3 10 17 97.4 10 21 

48 111.5 13 18 94.6 5 26 105.9 6 16 97.4 5 19 

Fixed effects: X 

Random effects : Batch 

 

β0 + b0i + (β1 + b1i ) Xij 

1. Observations: (Favij|b0i ,b1i ) ∼ B [Nij ,(πij|b0i,b1i )] 

2. Model focus: E(Favij|b0i ,b1i ) = πij|b0i,b1i 

3. Linear predictor: hij = β0 + b0i + (β1 + b1i ) Xij 

4. Assumptions about b0i  and b1i (if random) 

5. Logit link: log[πij /(1 − πij )] = β0 + b0i + (β1 + b1i ) Xij ,  



Estimation and Inference 

Generalized linear mixed model fit by maximum likelihood (Laplace  Approximation) [glmerMod] 

Family: binomial  ( logit ) 

Formula: cbind(dt$Fav, dt$N - dt$Fav) ~ dt$X + (1 | Batch) 

 

     AIC      BIC    logLik  deviance  df.resid  

   151.8    156.5     -72.9     145.8        33  

Scaled residuals:  

    Min       1Q   Median      3Q      Max  

-1.6315  -0.6042   0.1118   0.4402   3.0004  

 

Random effects: 

 Groups Name         Variance  Std.Dev. 

 Batch  (Intercept)  0.01395   0.1181   

Number of obs: 36, groups:  Batch, 4 

 

Fixed effects: 

               Estimate  Std. Error  z value  Pr(>|z|)     

(Intercept)   1.584756   0.149651   10.590   < 2e-16 *** 

dt$X          -0.045388   0.005963  -7.612   2.7e-14 *** 

setwd("d:/Prof.Kan/mixmodel_Kan_1D") 

read.csv("multibatchdata.csv",h=T,as.is=T) -> dt 

library(lme4) 

Batch<- as.character(dt$Batch)  

gm1 <- glmer(cbind(dt$Fav, dt$N- dt$Fav) ~ dt$X+ (1 | Batch), family = binomial) 

summary(gm1) 

Binomial reponse 



Estimation and Inference 
 Let us fit a normal mixed model to the multibatch data: 

1. Observations: (yij|b0i ,b1i ) ∼ N(μij|b0i ,b1i ,σ
2 ) 

2. Model focus: E(yij|b0i ,b1i ) = μij|b0i ,b1i  

3. Linear predictor: hij = β0 + b0i + (β1 + b1i ) Xij 

4. Assumptions about b0i  and b1i ∼ N(0, G) 

5. Identity link: (μij|b0i ,b1i ) = β0 + b0i + (β1 + b1i ) Xij 

X Batch 1 Batch2 Batch 3 Batch 4 

Y Fav N Y Fav N Y Fav N Y Fav N 

0 95.6 15 21 96.6 18 21 96.6 16 19 96.6 18 21 

3 96.9 13 17 96.7 14 16 96.5 13 19 96.8 18 21 

6 98.5 19 23 96.3 14 17 97.7 17 22 96.4 14 20 

9 99.0 14 17 96.3 17 20 98.3 23 27 96.6 14 19 

12 100.2 18 23 96.5 15 20 99.1 16 21 96.8 14 19 

18 101.9 19 27 96.4 14 22 100.5 11 16 96.9 11 20 

24 104.1 15 20 95.7 12 22 101.2 13 18 97.1 11 16 

36 107.8 14 21 95.2 11 25 103.3 10 17 97.4 10 21 

48 111.5 13 18 94.6 5 26 105.9 6 16 97.4 5 19 

Fixed effects: X 

Random effects : Batch 

 

β0 + b0i + (β1 + b1i ) Xij 



Estimation and Inference 

Linear mixed model fit by REML ['lmerMod'] 

Formula: dt$Y ~ dt$X + (1 | Batch) 

 REML criterion at convergence: 176.2 

  

Scaled residuals:  

     Min        1Q    Median  3Q  Max  

-2.41643  -0.47968   0.02534   0.57671   2.43510  

  

Random effects: 

 Groups   Name  Variance Std.Dev. 

 Batch    (Intercept)  6.332     2.516    

 Residual              5.857     2.420    

Number of obs: 36, groups:  Batch, 4 

 

Fixed effects: 

             Estimate  Std. Error  t value 

(Intercept)  96.50627  1.40072   68.90 

dt$X          0.13129  0.02867     4.58 

setwd("d:/Prof.Kan/mixmodel_Kan_1D") 

read.csv("multibatchdata.csv",h=T,as.is=T) -> dt 

library(lme4) 

Batch<- as.character(dt$Batch)  

gm2 <- glmer(dt$Y ~ dt$X+ (1 | Batch), family =gaussian) 

summary(gm2) 

Normal reponse 

Source DF Adj SS Adj MS  F-Value P-Value 

  X 1 122.838 122.838 264.83 0.000 

  Batch 3 0.782 0.261 0.56 0.644 

  X*Batch 3 168.579 56.193 121.15 0.000 

Error 28 12.987 0.464 

Total 35 492.943 

Linear model 



Estimation and Inference 

Model diagnostics 
 Literatures on diagnostics of mixed models involving 

random effects is not extensive. 
 Limited methodology is available, mostly regarding 

assessing the distribution of the random effects and errors. 
 The methods may be classified as diagnostic plots and 

goodness-of-fit tests. 

Diagnostic plots. Lange and Ryan (1989) proposed to examine a 
Q–Q plot of some standardized linear combinations 
 
 
 
where c is a known vector. They argued that, through appropriate 
choices of c, the plot can be made sensitive to different types of 
model departures. 



Estimation and Inference 

Goodness of fit tests. Few authors have developed tests for 
checking distributional assumptions involved in linear mixed 
models. Consider a mixed ANOVA model 
   y = Xβ + Zα + e 

where for 1 ≤ i ≤ s, αi = (αij)1≤j≤mi, where the αijs are i.i.d. ~ (0, σ2), 
and continuous distribution Fi = Fi(· |σi); and  e= (ej)1≤j≤N, where 
the ejs are i.i.d. ~ (0, τ2), and continuous distribution G = G(· |τ ); 
and α1, . . . , αs, e are independent. 

 
We are interested in testing the following hypothesis, 
  H0 : Fi(·|σi) = F0i(·|σi)  , 1 ≤ i ≤ s, 

   and G(·|τ) = G0(·|τ ); 

that is, the distributions of the random effects and errors, up to 
a set of unknown variance components σ1

2, . . . , σ1
2, τ2, are as 

assumed. The model does not fit if we reject this hipothesis. 
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Mixed Models in Practice 

 Mixed model is very popular 

 Google search (April 25th, 2016): 

 “mixed model”     629,000 results (0.46 seconds) 

 “robust statistics”     197,000 results (0.40 seconds) 

 “AMMI”       11,900 results (0.45 seconds) 

(Additive Main effect Multiplicative Interaction) 

 The mixed models have been in many areas such 
as: 

 Biology, Education, Social and economics, Humanity, 
Physics and astronomy, Environment 

 Next is several works in Bogor on mixed models 
which are promising but still in early stages. 



Mixed Models in Practice (cont..) 
 Example 1. (Notodiputro and Yahya, 2016) 

 “The Gamma Mixed Model for Analyzing Length of Stay of 
Tuberculosis Patients at Gorontalo Hospital” 

 Gorontalo is a province in eastern part of Indonesia and is 
considered having high incidence of tuberculosis. 

 The length of stay of a patient is the response variable or the 
outcomes (Y measured in days). 

 Usually distribution of duration (length of stay, Y) is skewed, 
and we may approximate using gamma distribution. 

 The data was collected from a hospital in Gorontalo province 
and it consists of many predictors, namely room type, age 
category, sex, secondary diseases, rural or urban, doctor. 

 The sample size is 612 patients, these are the patients during 
2015. 



Mixed Models in Practice (cont..) 
 Example 1. (Notodiputro and Yahya, 2016) 

 “The Gamma Mixed Model for Analyzing Length of Stay of 
Tuberculosis Patients at Gorontalo Hospital” 

 Response var.: length of stay in the hospital (y) assumed to 
have (conditional on random effects) gamma distributions. 

 Explanatory var.: room type (p), age category (u), sex (s), 
secondary diseases (k), rural or urban (a), doctor (d) 

  The linear predictor: 

 

 

 

 

  where  the distribution of random effects d ∼ N(0, σδ
2) 



Mixed Models in Practice (cont..) 

Indonesia 

Sulawesi 

Example 1. 



Mixed Models in Practice (cont..) 
 Example 1. (Notodiputro and Yahya, 2016) 

 The anova table 

Source DF F p-value 

Room type (p )  1 5.51 0.019 

Sex (s ) 1 0.01 0.908 

Age category (u ) 2 0.03 0.972 

Secondary disease (k ) 1 3.58 0.059 

Rural or urban (a ) 1 8.22 0.004 

p*s 1 0.30 0.582 

p*u 2 0.95 0.388 

p*k 1 13.91 0.000 

p*a 1 8.78 0.003 

s*u 2 0.54 0.581 

s*k 1 0.01 0.925 

s*a 1 0.06 0.809 

u*k 2 2.06 0.129 

u*a 2 0.11 0.900 

k*a 1 1.39 0.239 

sδ
2 = 0.00679 

sε
2 = 2.52600 

 Variation within doctor is 
smaller than variation 
between doctors 

 Room type is significant: 
the patients in better 
room stay longer 

 Interaction p*k and p*a 
are significant  further 

exploration is required 

n = 612 patients 



Mixed Models in Practice (cont..) 
 Example 1. (Notodiputro and Yahya, 2016) 

Interactions 



Mixed Models in Practice (cont..) 
 Example 2. (Notodiputro and Adabiyah, 2016) 

 “Nested Linear Mixed Model and Parametric Stability Analysis 
for Multilocation Experiments of  Shorgum Genotypes” 

Sorghum 

 10 shorghum genotypes were 
evaluated based on their yields 

 3 sorghum were used as control 

 Randomized block experiments 
were carried out in two seasons 
and 5 different locations within 
the seasons. 

 Eventually, we want to know the performance of these 
genotypes and which of them that can produce stable yields. 



Mixed Models in Practice (cont..) 
 Example 2. (Notodiputro and Adabiyah, 2016) 

 “Nested Linear Mixed Model and Parametric Stability Analysis 
for Multilocation Experiments of  Shorgum Genotypes” 

 Response var.: Shorgum yield (y) assumed to have 
(conditional on random effects) normal distributions 

 Explanatory var.: genotypes (G), seasons (S), locations (L), 

blocks (B) 

 The linear predictor: 

 

  

 where  the distribution of random effects B∼ N(0, σB
2);  

 L ∼ N(0, σL
2) ; and GL ∼ N(0, σGL

2)  



Mixed Models in Practice (cont..) 

Indonesia 

Locations: 
● Yogyakarta 

● Depok 

● Wonosari 

● Telukbetung 

● Mataram 

● Bogor 

● Boyolali 

● Tj.Karang 

● Pekanbaru 



Mixed Models in Practice (cont..) 
 Example 2. (Notodiputro and Adabiyah, 2016) 

 The anova table 

Random Effects Var.est Std eror Z p-value 

Location (Season) 0.2248 0.1203 1.8700 0.0309 

Genotype*Location (Season) 0.0882 0.0316 2.7900 0.0026 

Block (Season*Location) 0.0000 . . . 

Error 0.3554 

Fixed Effects 
DF for 

numerator 

DF for 

denominator 
F P-value 

Genotype 12 96 54.4700 <.0001 

Season 1 8 0.3100 0.5923 

Genotype*Season 12 96 1.3500 0.2027 

13x3x5x2 = 390 experimental units 



Mixed Models in Practice (cont..) 
 Example 2. (Notodiputro and Adabiyah, 2016) 

Genotypes 
Yield 

CVi Wi 
2   di

2 

G1 19.5814 21.3965 10.5619 

G2 20.4037 21.3650 8.8558 

G3 22.2235 25.1734 12.2653 

G4 17.9484 23.1228 7.1587 

G5 6.4129 14.4406 4.1602 

G6  14.6978 24.7314 4.6860 

G7 6.9182 11.8964 3.1412 

G8 8.0645 12.1867 4.5061 

G9 19.2566 19.7342 7.4759 

G10 12.7184 29.7786 5.3025 

Kawali (K) 9.5080 15.3093 4.6290 

Mandau (M) 11.4640 27.5873 2.0947 

Pahat (P) 9.5229 14.9245 3.4744 

CVi   is coefficient of variation; Wi 
2  is ecovalence; and di

2 is genotypic stability 
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Mixed Models in Practice (cont..) 
 Example 3. (Angraini and Notodiputro, 2016) 
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IPB - PSU Collaborative Research RPM ID16287; The Na Thap river Project 

(Saheem, 2015)  



Mixed Models in Practice (cont..) 
 Example 3. (Angraini and Notodiputro, 2016) 

 “Generalized Linear Mixed Models for Analyzing Fish Stock at 
Na Thap River” 

 Response var.: Fish stock (y) assumed to have (conditional on 
random effects) Gamma distributions 

 Explanatory var.: Zone (Z ), WDEPTH (W ), SAL (L ), DO (D ) 
BOD (B ), and Site (S ). 

 The linear predictor: 

  hij = μ +β1 Zi +β2 Wi +β3 Li +β4 Di +β5 Bi + Sj  

 where  the distribution of random effects Si ∼ N(0, σS
2);  

 Or, η = Xβ + Zs and s ∼ N(0,G) 

 Link function: log 

IPB - PSU Collaborative Research RPM ID16287; The Na Thap river Project 



Mixed Models in Practice (cont..) 
 Example 3. (Angraini and Notodiputro, 2016) 
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brackish 

Saline 

Estimates Std.error t Pr(>|t|) 
Intersep  4.549 0.164 27.740 0.000* 

Zone2 -0.008 0.030 -0.287 0.774 

Zone3 0.282 0.034 8.224 0.000* 
WTEMP -0.026 0.005 -5.381 0.000* 
WDEPTH -0.039 0.006 -6.300 0.000* 
SAL 0.018 0.001 20.552 0.000* 
DO 0.015 0.009 1.603 0.109 
BOD 0.028 0.008 3.267 0.001* 

0.320 
0.084 

σ2  site 

σ2  error 
Variation among sites was evident 

??? 

IPB - PSU Collaborative Research RPM ID16287; The Na Thap river Project 

(Saheem, 2015)  

n = 3741 



Mixed Models in Practice (cont..) 
 Example 3. (Angraini and Notodiputro, 2016) 

 The pairwise confidence intervals: 

 

 

 

 

 

 The power plant is in site 3 

 Site 2 vs 3 is significant (site 2 > site 3) 

 Site 3 vs 4 is siginificant (site 4 > site 3) 

Site Substracted from Site 

2 3 4 

1 (-7909,4741) (-774,11876) (-8336,4315) 

2 (810,13460) (-6751,5899) 

3 (-13886,-1236) 

IPB - PSU Collaborative Research RPM ID16287; The Na Thap river Project 



Mixed Models in Practice (cont..) 
 Example 4. (Arisanti and Notodiputro, 2016) 

 “Bias Reduction in Estimating Variance Components of 
Phytoplankton Abundance at Na Thap River based on Logistic 
Linear Mixed Models” 

 Response var.: Phytoplankton abundance (y) assumed to 
have (conditional on random effects) binomial distributions 

 Explanatory var.: SAL (L ), DO (D ) BOD (B ), and Site (S ). 

 The linear predictor: 

  hij = μ +β3 Li +β4 Di +β5 Bi +Sj  

 where  the distribution of random effects Si ∼ N(0, σS
2);  

 Or, η = Xβ + Zs and s ∼ N(0,G) 

 Link function: logistics 

IPB - PSU Collaborative Research RPM ID16287; The Na Thap river Project 



Mixed Models in Practice (cont..) 
 Example 4. (Arisanti and Notodiputro, 2016) 

 It is well known that variance estimates of MLE are biased 

 We follow the idea of Firth (1993) to adjust variance 
components in GLMM with logistic link function 

IPB - PSU Collaborative Research RPM ID16287; The Na Thap river Project 

^ 
      If U(θ) is the score function in ML 

estimation, and θ  is subject to a 
positive bias b(θ), the score 
function is shifted downward at 
each point θ by amount i(θ)b(θ), 
where –i(θ)=U’(θ)  is the local 
gradient, then the adjusted score 
function: 

  U*(θ) = U(θ) - i(θ)b(θ) 

   or 

  U*(θ) = U(θ) + A(θ)  



Mixed Models in Practice (cont..) 
 Example 4. (Arisanti and Notodiputro, 2016) 

 The adjusted score function: 

  U*(θ) = U(θ) - i(θ)b(θ) or U*(θ) = U(θ) + A(θ)  

 The solution to this adjusted score function is θ* 

 Firth adjustment is based on F and H are Fisher’s information 
and Hessian matrix 

  

IPB - PSU Collaborative Research RPM ID16287; The Na Thap river Project 



Mixed Models in Practice (cont..) 
 Example 4. (Arisanti and Notodiputro, 2016) 

 The ML estimate of variance component of site: 

   σ2site = 0.986 

 The adjusted estimate is 

    σ2site = 0.735 

 The variance component has been reduced by 26% 

 The analysis of variance table: 

IPB - PSU Collaborative Research RPM ID16287; The Na Thap river Project 

^ 

~ 

Estimate Std. Error z value Pr(>|z|) 

(Intercept)     2.0288 0.3682 5.511 0.0000 

DO -0.3153 0.0775 -4.067 0.0000 

BOD 0.1325 0.0998 1.327 0.1840    

Salinitas -0.0108 0.0106 -1.021 0.3070    

n = 466 (Synedra) 



Mixed Models in Practice (cont..) 
 Example 5. (Angraini and Notodiputro, 2016) 

 “A Hierarchical Approach to Generalized Linear Mixed Model 
for Analyzing Fish Species Abundance at Na Thap River” 

 Response var.: Fish species abundance (y) assumed to have 
(conditional on random effects) Poisson (λ) distributions. 

 Explanatory var.: SAL (L ), DO (D ) BOD (B ), and Site (S ). 

 The linear predictor: 

  hijk = μ +β1 Zi +β2 Wj +β3 Lj +β4 Dj +β5 Bj + Sk  

 where  the distribution of random effects Sk ∼ Gamma(α) 

 Link function: log 

 The hierarchical likelihood 

 L(y|λ)+L (α;u)= ∑(yijklnλij – λij )+ ∑{α lnuij+α ln α- αuij-α ln Γ(α)} 

IPB - PSU Collaborative Research RPM ID16287; The Na Thap river Project 

^ 



Mixed Models in Practice (cont..) 
 Example 5. (Angraini and Notodiputro, 2016) 

IPB - PSU Collaborative Research RPM ID16287; The Na Thap river Project 

  Hierarchical Model 

  Estimate Std.error T Pr(>|t|) 

Intersep 3.021 0.180 16.826 0.000 

Zonefreshwater -0.242 0.156 -1.558 0.120 

Zonesaline 0.344 0.167 2.056 0.040 

WTEMP 0.002 0.004 0.552 0.581 

WDEPTH -0.010 0.010 -0.945 0.345 

SAL 0.006 0.001 8.004 0.000 

DO 0.026 0.007 3.507 0.000 

BOD 0.025 0.007 3.619 0.000 

0.709 

0.041 
Variation among sites was evident 

n = 531 
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Concluding Remarks 

General linear 

models:
Anova, Regression

ANCOVA, etc

Mixed models:
Repeated measures

Change-over trials

Subsampling

Clustered data

...

Generalized 

linear models:
Logit/probit models

Poisson models

Gamma models

...

Generalized 

linear mixed 

models:
Mixed models for non-

normal data.

Developed into...
Developed into...

Merged into...

Linear models: 
Anova, Regression, 

Ancova, etc 

Mixed models: 
Repeated measures, 
Change-over trials, 

Subsampling, 
Clustered data 

Generalized linear 
models: 

Logit/probit models, 
Poisson models, 
Gamma models 

Generalized linear 
mixed models: 
Mixed model for 
non-normal data 

Applied in 
various areas or 
subjects, 
including in small 
area estimation 
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